Smoke Emission Properties of Floor Covering Materials of Furnished Apartments in a Building

Author:

Półka MarzenaORCID,Szajewska Anna

Abstract

The paper presents results of tests related to smoke optical density conducted on four various textile floor coverings for the needs of building interior design. Smoke emission is one of basic elements that characterize the fire environment. Consequently, the objective of the paper was to carry out a comparative analysis of smoke generation of chosen floor coverings for selected thermal exposures and in the presence or absence of a stimulus igniting the volatile gaseous phase (pilot flame). For the needs of our experimental research use was made of polypropylene, polyester, composite of wool, cotton, viscose and polyamide floor coverings. The highest value of the maximum specific optical density of smoke (494.7) was recorded for the floor covering consisting of 100% polypropylene (with higher fiber) under flameless combustion conditions (without the pilot flame). The polypropylene floor covering without underlay proved to be the best material from among all the tested ones with respect to smoke generating properties, and its samples offered the lowest value of optical density after 4 min for testing variants without the application of a pilot burner, with the flammable phase of decomposition products of this sample during the testing in which the burner was used to ignite at the latest. Experimental research has been carried out based on the standard ISO 5659–2:2017–08. The tests results were compared with international optical smoke density requirements for the interior design of ships and trains.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3