Identifying the Factors Contributing to the Severity of Truck-Involved Crashes in Shanghai River-Crossing Tunnel

Author:

Chen Shengdi,Zhang ShiwenORCID,Xing Yingying,Lu Jian

Abstract

The impact that trucks have on crash severity has long been a concern in crash analysis literature. Furthermore, if a truck crash happens in a tunnel, this would result in more serious casualties due to closure and the complexity of the tunnel. However, no studies have been reported to analyze traffic crashes that happened in tunnels and develop crash databases and statistical models to explore the influence of contributing factors on tunnel truck crashes. This paper summarizes a study that aims to examine the impact of risk factors such as driver factor, environmental factor, vehicle factor, and tunnel factor on truck crashes injury propensity based on tunnel crashes data obtained from Shanghai, China. An ordered logit model was developed to analyze injury crashes and property damage only crashes. The driver factor, environmental factor, vehicle factor, and tunnel factor were explored to identify the relationship between these factors and crashes and the severity of crashes. Results show that increased injury severity is associated with driver factors, such as male drivers, older drivers, fatigue driving, drunkenness, safety belt used improperly, and unfamiliarity with vehicles. Late night (00:00–06:59) and afternoon rushing hours (16:30–18:59), weekdays, snow or icy road conditions, combination truck, overload, and single vehicle were also found to significantly increase the probability of injury severity. In addition, tunnel factors including two lanes, high speed limits (≥80 km/h), zone 3, extra-long tunnels (over 3000 m) are also significantly associated with a higher risk of severe injury. So, the gender, age of driver, mid-night to dawn and afternoon peak hours, weekdays, snowy or icy road conditions, the interior zone of a tunnel, the combination truck, overloaded trucks, and extra-long tunnels are associated with higher crash severity. Identification of these contributing factors for tunnel truck crashes can provide valuable information to help with new and improved tunnel safety control measures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3