Is the Random Forest Algorithm Suitable for Predicting Parkinson’s Disease with Mild Cognitive Impairment out of Parkinson’s Disease with Normal Cognition?

Author:

Byeon HaewonORCID

Abstract

Because it is possible to delay the progression of dementia if it is detected and treated in an early stage, identifying mild cognitive impairment (MCI) is an important primary goal of dementia treatment. The objectives of this study were to develop a random forest-based Parkinson’s disease with mild cognitive impairment (PD-MCI) prediction model considering health behaviors, environmental factors, medical history, physical functions, depression, and cognitive functions using the Parkinson’s Dementia Clinical Epidemiology Data (a national survey conducted by the Korea Centers for Disease Control and Prevention) and to compare the prediction accuracy of our model with those of decision tree and multiple logistic regression models. We analyzed 96 subjects (PD-MCI = 45; Parkinson’s disease with normal cognition (PD-NC) = 51 subjects). The prediction accuracy of the model was calculated using the overall accuracy, sensitivity, and specificity. Based on the random forest analysis, the major risk factors of PD-MCI were, in descending order of magnitude, Clinical Dementia Rating (CDR) sum of boxes, Untitled Parkinson’s Disease Rating (UPDRS) motor score, the Korean Mini Mental State Examination (K-MMSE) total score, and the K- Korean Montreal Cognitive Assessment (K-MoCA) total score. The random forest method achieved a higher sensitivity than the decision tree model. Thus, it is advisable to develop a protocol to easily identify early stage PDD based on the PD-MCI prediction model developed in this study, in order to establish individualized monitoring to track high-risk groups.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3