Measuring Air Quality for Advocacy in Africa (MA3): Feasibility and Practicality of Longitudinal Ambient PM2.5 Measurement Using Low-Cost Sensors

Author:

Awokola Babatunde I.,Okello Gabriel,Mortimer Kevin J.ORCID,Jewell Christopher P.,Erhart Annette,Semple SeanORCID

Abstract

Ambient air pollution in urban cities in sub-Saharan Africa (SSA) is an important public health problem with models and limited monitoring data indicating high concentrations of pollutants such as fine particulate matter (PM2.5). On most global air quality index maps, however, information about ambient pollution from SSA is scarce. We evaluated the feasibility and practicality of longitudinal measurements of ambient PM2.5 using low-cost air quality sensors (Purple Air-II-SD) across thirteen locations in seven countries in SSA. Devices were used to gather data over a 30-day period with the aim of assessing the efficiency of its data recovery rate and identifying challenges experienced by users in each location. The median data recovery rate was 94% (range: 72% to 100%). The mean 24 h concentration measured across all sites was 38 µg/m3 with the highest PM2.5 period average concentration of 91 µg/m3 measured in Kampala, Uganda and lowest concentrations of 15 µg/m3 measured in Faraja, The Gambia. Kampala in Uganda and Nnewi in Nigeria recorded the longest periods with concentrations >250 µg/m3. Power outages, SD memory card issues, internet connectivity problems and device safety concerns were important challenges experienced when using Purple Air-II-SD sensors. Despite some operational challenges, this study demonstrated that it is reasonably practicable and feasible to establish a network of low-cost devices to provide data on local PM2.5 concentrations in SSA countries. Such data are crucially needed to raise public, societal and policymaker awareness about air pollution across SSA.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference44 articles.

1. How Air Pollution is Destroying Our Healthhttps://www.who.int/air-pollution/news-and-events/how-air-pollution-is-destroying-our-health

2. The Lancet Commission on pollution and health

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3