Associations of Body Mass Index with Demographics, Lifestyle, Food Intake, and Mental Health among Postpartum Women: A Structural Equation Approach

Author:

Salarzadeh Jenatabadi HashemORCID,Bt Wan Mohamed Radzi Che Wan JasimahORCID,Samsudin NadiaORCID

Abstract

As postpartum obesity is becoming a global public health challenge, there is a need to apply postpartum obesity modeling to determine the indicators of postpartum obesity using an appropriate statistical technique. This research comprised two phases, namely: (i) development of a previously created postpartum obesity modeling; (ii) construction of a statistical comparison model and introduction of a better estimator for the research framework. The research model displayed the associations and interactions between the variables that were analyzed using the Structural Equation Modeling (SEM) method to determine the body mass index (BMI) levels related to postpartum obesity. The most significant correlations obtained were between BMI and other substantial variables in the SEM analysis. The research framework included two categories of data related to postpartum women: living in urban and rural areas in Iran. The SEM output with the Bayesian estimator was 81.1%, with variations in the postpartum women’s BMI, which is related to their demographics, lifestyle, food intake, and mental health. Meanwhile, the variation based on SEM with partial least squares estimator was equal to 70.2%, and SEM with a maximum likelihood estimator was equal to 76.8%. On the other hand, the output of the root mean square error (RMSE), mean absolute error (MSE) and mean absolute percentage error (MPE) for the Bayesian estimator is lower than the maximum likelihood and partial least square estimators. Thus, the predicted values of the SEM with Bayesian estimator are closer to the observed value compared to maximum likelihood and partial least square. In conclusion, the higher values of R-square and lower values of MPE, RMSE, and MSE will produce better goodness of fit for SEM with Bayesian estimators.

Funder

Universiti Malaya

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3