Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions

Author:

Baddoo Thelma Dede,Li Zhijia,Guan Yiqing,Boni Kenneth Rodolphe Chabi,Nooni Isaac KwesiORCID

Abstract

The identification of unit hydrographs and component flows from rainfall, evapotranspiration and streamflow data (IHACRES) model has been proven to be an efficient yet basic model to simulate rainfall–runoff processes due to the difficulty in obtaining the comprehensive data required by physical models, especially in data-scarce, semi-arid regions. The success of a calibration process is tremendously dependent on the objective function chosen. However, objective functions have been applied largely in over daily and monthly scales and seldom over sub-daily scales. This study, therefore, implements the IHACRES model using ‘hydromad’ in R to simulate flood events with data limitations in Zhidan, a semi-arid catchment in China. We apply objective function constraints by time aggregating the commonly used Nash–Sutcliffe efficiency into daily and hourly scales to investigate the influence of objective function constraints on the model performance and the general capability of the IHACRES model to simulate flood events in the study watershed. The results of the study demonstrated the advantage of the finer time-scaled hourly objective function over its daily counterpart in simulating runoff for the selected flood events. The results also indicated that the IHACRES model performed extremely well in the Zhidan watershed, presenting the feasibility of the use of the IHACRES model to simulate flood events in data scarce, semi-arid regions.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3