Physiological Responses of Earthworm Under Acid Rain Stress

Author:

Chen Xuan,Zhang Jiaen,Wei Hui

Abstract

Acid rain has become one of the major global environmental problems, and some researches reported that acid rain may have a certain inhibition on soil biodiversity. Besides this, it is well known that earthworm (Eisenia fetida) plays an important role in the functioning of soil ecosystems. For this point, we conducted a series of experiments to investigate whether acid rain would take effects on earthworms. In the present study, the earthworms were incubated on filter paper and in soil under acid rain stress. The mortality and behavior of earthworms were recorded, and epidermal damage and the activity of the CYP3A4 enzyme were measured for the tested earthworms. Our experimental results showed that the earthworms could not survive in the acid rain stress of pH below 2.5, and acid rain with weak acidity (i.e., 4.0 ≤ pH ≤ 5.5) promoted the activity of the CYP3A4 enzyme in the earthworms, while acid rain with strong acidity (i.e., 3.0 ≤ pH ≤ 3.5) inhibited it. Moreover, the degree of damage in sensitive parts of the earthworms increased with the decrease of pH value. This study suggests that acid rain can cause discomfort response and the direct epidermal damage of earthworms, and even kill them.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference58 articles.

1. Initial simulated acid rain impacts reactive oxygen species metabolism and photosynthetic abilities in Cinnamonum camphora undergoing high temperature

2. Acid rain is a local environmental pollution but global concern;Haradhan;Open Sci. J. Anal. Chem.,2018

3. Analysis on current situation, formation causes and control countermeasures of acid rain pollution in China;Wan;J. Anhui Agri. Sci,2010

4. Research on acid rain on the right track;An;World Sci.,1983

5. Biochemical parameters of plants as indicators of air pollution;Tripathi;J. Environ. Biol.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3