Author:
Li Chao,Zhou Kang,He Hanyue,Cao Jiashun,Zhou Shihua
Abstract
The low power generation efficiency of microbial fuel cells (MFCs) is always a barrier to further development. An attempt to enhance the start-up and electricity generation of MFCs was investigated by adding different doses of zero-valent iron into anaerobic anode chambers in this study. The results showed that the voltage (289.6 mV) of A2 with 0.5 g of zero-valent iron added was higher than the reference reactor (197.1 mV) without dosing zero-valent iron (A4). The maximum power density of 27.3 mW/m2 was obtained in A2. CV analysis demonstrated that A2 possessed a higher oxidation–reduction potential, hence showing a stronger oxidizing property. Meanwhile, electrochemical impedance analysis (EIS) also manifested that values of RCT of carbon felts with zero-valent iron supplemented (0.01–0.03 Ω) were generally lower. What is more, SEM images further proved and illustrated that A2 had compact and dense meshes with a hierarchical structure rather than a relatively looser biofilm in the other reactors. High-throughput sequencing analysis also indicated that zero-valent iron increased the abundance of some functional microbial communities, such as Acinetobacter, Ignavibacteriales, Shewanella, etc.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献