Evidence-Based Considerations Exploring Relations between SARS-CoV-2 Pandemic and Air Pollution: Involvement of PM2.5-Mediated Up-Regulation of the Viral Receptor ACE-2

Author:

Borro MarinaORCID,Di Girolamo PaoloORCID,Gentile GiovannaORCID,De Luca Ottavia,Preissner RobertORCID,Marcolongo Adriano,Ferracuti StefanoORCID,Simmaco Maurizio

Abstract

The COVID-19/SARS-CoV-2 pandemic struck health, social and economic systems worldwide, and represents an open challenge for scientists —coping with the high inter-individual variability of COVID-19, and for policy makers —coping with the responsibility to understand environmental factors affecting its severity across different geographical areas. Air pollution has been warned of as a modifiable factor contributing to differential SARS-CoV-2 spread but the biological mechanisms underlying the phenomenon are still unknown. Air quality and COVID-19 epidemiological data from 110 Italian provinces were studied by correlation analysis, to evaluate the association between particulate matter (PM)2.5 concentrations and incidence, mortality rate and case fatality risk of COVID-19 in the period 20 February–31 March 2020. Bioinformatic analysis of the DNA sequence encoding the SARS-CoV-2 cell receptor angiotensin-converting enzyme 2 (ACE-2) was performed to identify consensus motifs for transcription factors mediating cellular response to pollutant insult. Positive correlations between PM2.5 levels and the incidence (r = 0.67, p < 0.0001), the mortality rate (r = 0.65, p < 0.0001) and the case fatality rate (r = 0.7, p < 0.0001) of COVID-19 were found. The bioinformatic analysis of the ACE-2 gene identified nine putative consensus motifs for the aryl hydrocarbon receptor (AHR). Our results confirm the supposed link between air pollution and the rate and outcome of SARS-CoV-2 infection and support the hypothesis that pollution-induced over-expression of ACE-2 on human airways may favor SARS-CoV-2 infectivity.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3