Short-Term ONX-0914 Administration: Performance and Muscle Phenotype in Mdx Mice

Author:

Kwak Dongmin,Wei GuoxianORCID,Thompson LaDora V.,Kim Jong-Hee

Abstract

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease. Although the lack of dystrophin protein is the primary defect responsible for the development of DMD, secondary disease complications such as persistent inflammation contribute greatly to the pathogenesis and the time-dependent progression of muscle destruction. The immunoproteasome is a potential therapeutic target for conditions or diseases mechanistically linked to inflammation. In this study, we explored the possible effects of ONX-0914 administration, an inhibitor specific for the immunoproteasome subunit LMP7 (ß5i), on motor performance, muscular pathology and protein degradation in 7-week old MDX mice, an age when the dystrophic muscles show extensive degeneration and regeneration. ONX-0914 (10 mg/kg) was injected subcutaneously on Day 2, 4, and 6. The mice were evaluated for physical performance (walking speed and strength) on Day 1 and 8. We show that this short-term treatment of ONX-0914 in MDX mice did not alter strength nor walking speed. The physical performance findings were consistent with no change in muscle inflammatory infiltration, percentage of central nuclei and proteasome content. Taken together, muscle structure and function in the young adult MDX mouse model are not altered with ONX-0914 treatment, indicating the administration of ONX-0914 during this critical time period does not exhibit any detrimental effects and may be an effective treatment of secondary complications of muscular dystrophy after further investigations.

Funder

National Research Foundation of Korea

Travis Roy Foundation

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3