Effects of Weather on Coronavirus Pandemic

Author:

Bukhari Qasim,Massaro Joseph M.,D’Agostino Ralph B.,Khan Sheraz

Abstract

The novel coronavirus (SARS-CoV-2) has spread globally and has been declared a pandemic by the World Health Organization. While influenza virus shows seasonality, it is unknown if COVID-19 has any weather-related affect. In this work, we analyze the patterns in local weather of all the regions affected by COVID-19 globally. Our results indicate that approximately 85% of the COVID-19 reported cases until 1 May 2020, making approximately 3 million reported cases (out of approximately 29 million tests performed) have occurred in regions with temperature between 3 and 17 °C and absolute humidity between 1 and 9 g/m3. Similarly, hot and humid regions outside these ranges have only reported around 15% or approximately 0.5 million cases (out of approximately 7 million tests performed). This suggests that weather might be playing a role in COVID-19 spread across the world. However, this role could be limited in US and European cities (above 45 N), as mean temperature and absolute humidity levels do not reach these ranges even during the peak summer months. For hot and humid countries, most of them have already been experiencing temperatures >35 °C and absolute humidity >9 g/m3 since the beginning of March, and therefore the effect of weather, however little it is, has already been accounted for in the COVID-19 spread in those regions, and they must take strict social distancing measures to stop the further spread of COVID-19. Our analysis showed that the effect of weather may have only resulted in comparatively slower spread of COVID-19, but not halted it. We found that cases in warm and humid countries have consistently increased, accounting for approximately 500,000 cases in regions with absolute humidity >9 g/m3, therefore effective public health interventions must be implemented to stop the spread of COVID-19. This also means that ‘summer’ would not alone stop the spread of COVID-19 in any part of the world.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3