Author:
Yan Miaomiao,Chen Shengnan,Huang Tinglin,Li Baoqin,Li Nan,Liu Kaiwen,Zong Rongrong,Miao Yutian,Huang Xin
Abstract
In deep drinking water reservoir ecosystems, the dynamics and interactions of community compositions of phytoplankton and eukaryotes during the mixing periods are still unclear. Here, morphological characteristics combined with high-throughput DNA sequencing (HTS) were used to investigate the variations of phytoplankton and the eukaryotic community in a large canyon-shaped, stratified reservoir located at the Heihe River in Shaanxi Province for three months. The results showed that Bacillariophyta and Chlorophyta were the dominant taxa of the phytoplankton community, accounting for more than 97% of total phytoplankton abundance, which mainly consisted of Melosira sp., Cyclotella sp., and Chlorella sp., respectively. Illumina Miseq sequencing suggested that the biodiversity of eukaryotes increased over time and that species distribution was more even. Arthropoda (6.63% to 79.19%), Ochrophyta (5.60% to 35.16%), Ciliophora (1.81% to 10.93%) and Cryptomonadales (0.25% to 11.48%) were the keystone taxa in common, contributing over 50% of the total eukaryotic community. Cryptomycota as a unique fungus was observed to possess significant synchronization with algal density, reaching a maximum of 10.70% in December (when the algal density distinctly decreased) and suggesting that it might affect the growth of algae through parasitism. Co-occurrence network patterns revealed the complicated and diverse interactions between eukaryotes and phytoplankton, suggesting that eukaryotes respond to variations in dynamic structure of the phytoplankton community, although there might be antagonistic or mutualistic interactions between them. Redundancy analysis (RDA) results showed that environmental variables collectively explained a 96.7% variance of phytoplankton and 96.3% variance of eukaryotic microorganisms, indicating that the temporal variations of phytoplankton and eukaryotic microorganisms were significantly affected by environmental conditions. This study shows that potential interactions exist between phytoplankton and eukaryotic microorganism communities, andcould improve our understanding of the ecological roles of phytoplankton and eukaryotic microorganisms in changing aquatic ecosystems. However, long-term investigations are necessary in order to obtain comprehensive understandings of their complicated associations.
Funder
National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献