Classification of Biodegradable Substances Using Balanced Random Trees and Boosted C5.0 Decision Trees

Author:

Elsayad Alaa M.ORCID,Nassef Ahmed M.ORCID,Al-Dhaifallah MujahedORCID,Elsayad Khaled A.

Abstract

Substances that do not degrade over time have proven to be harmful to the environment and are dangerous to living organisms. Being able to predict the biodegradability of substances without costly experiments is useful. Recently, the quantitative structure–activity relationship (QSAR) models have proposed effective solutions to this problem. However, the molecular descriptor datasets usually suffer from the problems of unbalanced class distribution, which adversely affects the efficiency and generalization of the derived models. Accordingly, this study aims at validating the performances of balanced random trees (RTs) and boosted C5.0 decision trees (DTs) to construct QSAR models to classify the ready biodegradation of substances and their abilities to deal with unbalanced data. The balanced RTs model algorithm builds individual trees using balanced bootstrap samples, while the boosted C5.0 DT is modeled using cost-sensitive learning. We employed the two-dimensional molecular descriptor dataset, which is publicly available through the University of California, Irvine (UCI) machine learning repository. The molecular descriptors were ranked according to their contributions to the balanced RTs classification process. The performance of the proposed models was compared with previously reported results. Based on the statistical measures, the experimental results showed that the proposed models outperform the classification results of the support vector machine (SVM), K-nearest neighbors (KNN), and discrimination analysis (DA). Classification measures were analyzed in terms of accuracy, sensitivity, specificity, precision, false positive rate, false negative rate, F1 score, receiver operating characteristic (ROC) curve, and area under the ROC curve (AUROC).

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference44 articles.

1. Best Practices for QSAR Model Development, Validation, and Exploitation

2. Handbook of Molecular Descriptors;Roberto,2008

3. Current Modeling Methods Used in QSAR/QSPR;Yee,2012

4. Molecular descriptors for structure-activity applications: A hands-on approach;Grisoni,2018

5. Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3