Gas Phase Toluene Adsorption Using Date Palm-Tree Branches Based Activated Carbon

Author:

Vohra MuhammadORCID,Al-Suwaiyan Mohammad,Hussaini MinaamORCID

Abstract

Activated carbon that has been widely used for several environmental applications is typically produced from carbon-based raw materials including agricultural by-products. To that end, extensive date palm-tree farming across the globe with millions of palm trees, also results in various types of agricultural waste including date palm-tree branches (DPB) during the regular trimming phase of palm-trees. Furthermore, air pollution also remains a serious concern in many global regions, requiring the application of appropriate treatment technologies to mitigate the respective negative effects on human health and environment. The present study thus assessed the efficiency of activated carbon (AC) derived from date palm-tree branches to treat gaseous toluene (C6H5CH3) streams under varying dynamic flow conditions. The produced activated carbon showed BET specific surface area (SSABET) of 800.87 m2/g with micro and mesoporous structure. The AC FTIR results indicated several surface groups including oxygen based functional groups. Furthermore, the dynamic gas treatment results showed that the respective activated carbon can successfully treat gaseous toluene under varying gas flow rates, gas concentrations and activated carbon bed depths. An increase in the carbon bed depth and decrease in toluene gas concentration and/or flow rate, yielded higher breakthrough time (BT) and exhaustion time (ET) values. Adsorption modeling employing the response surface methodology (RSM) approach successfully modeled the respective gaseous toluene removal experimental findings, with breakthrough time (BT) and exhaustion time (ET) as the response factors. The respective model-fitting parameters showed good outcomes using natural logarithmic transform model.

Funder

King Fahd University of Petroleum and Minerals

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3