Tg(Δ113p53:cmyc) Transgene Upregulates glut1 Expression to Promote Zebrafish Heart Regeneration

Author:

Tang Zimu1,Wang Kaiyuan1,Lo Lijian2,Chen Jun1ORCID

Affiliation:

1. MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Cancer Center, Zhejiang University, Hangzhou 310058, China

2. College of Animal Sciences, Zhejiang University, Hangzhou 310058, China

Abstract

The heart switches its main metabolic substrate from glucose to fatty acids shortly after birth, which is one of reasons for the loss of heart regeneration capability in adult mammals. On the contrary, metabolic shifts from oxidative phosphorylation to glucose metabolism promote cardiomyocyte (CM) proliferation after heart injury. However, how glucose transportation in CMs is regulated during heart regeneration is still not fully understood. In this report, we found that the expression of Glut1 (slc2a1) was upregulated around the injury site of zebrafish heart, accompanied by an increase in glucose uptake at the injury area. Knockout of slc2a1a impaired zebrafish heart regeneration. Our previous study has demonstrated that the expression of Δ113p53 is activated after heart injury and Δ113p53+ CMs undergo proliferation to contribute to zebrafish heart regeneration. Next, we used the Δ113p53 promoter to generate the Tg(Δ113p53:cmyc) zebrafish transgenic line. Conditional overexpression of cmyc not only significantly promoted zebrafish CM proliferation and heart regeneration but also significantly enhanced glut1 expression at the injury site. Inhibiting Glut1 diminished the increase in CM proliferation in Tg(Δ113p53:cmyc) injured hearts of zebrafish. Therefore, our results suggest that the activation of cmyc promotes heart regeneration through upregulating the expression of glut1 to speed up glucose transportation.

Funder

National Key R&D Program of China

Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3