Equilibrium, Kinetics and Thermodynamics of Chromium (VI) Adsorption on Inert Biomasses of Dioscorea rotundata and Elaeis guineensis

Author:

Villabona-Ortíz AngelORCID,González-Delgado ÁngelORCID,Tejada-Tovar CandelariaORCID

Abstract

Adsorption equilibrium and kinetics on lignocellulosic base adsorbents from oil palm bagasse (OPB) and yam peels (YP) were studied for the removal of hexavalent chromium present in aqueous solution, in a batch system, evaluating the effect of temperature, adsorbent dose and particle size on the process. Isotherms were fitted to Langmuir, Freundlich and Dubinin–Radushkevich isothermal models. Kinetic data were adjusted to the pseudo-first-order, pseudo-second-order and Elovich models. Thermodynamic parameters were estimated by the van’t Hoff method. From characterization of adsorbents, the presence of a porous surface typical of lignocellulosic materials was found, with hydroxyl, amine and carboxyl functional groups. It was also found that the highest adsorption capacity was obtained at 0.03 g of adsorbent, 55 °C and 0.5 mm, reporting an adsorption capacity of 325.88 and 159 mg/g using OPB and YP, respectively. The equilibrium of adsorption on OPB is described by Langmuir and Freundlich isotherms, while that of YP is described by Dubinin–Radushkevich’s model, indicating that the adsorption is given by the ion exchange between the active centers and the metallic ions. A maximum adsorption capacity was obtained of 63.83 mg/g with OPB and 59.16 mg/g using YP, according to the Langmuir model. A kinetic study demonstrated that equilibrium time was 200 min for both materials; kinetic data were described by pseudo-second-order and Elovich models, thus the mechanism of Cr (VI) adsorption onto the evaluated materials is dominated by a chemical reaction. The thermodynamic study determined that the elimination of YP is endothermic, irreversible and not spontaneous, while for OPB it is exothermic, spontaneous at low temperatures and irreversible.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3