Segmentation of Apples in Aerial Images under Sixteen Different Lighting Conditions Using Color and Texture for Optimal Irrigation

Author:

Sabzi Sajad,Abbaspour-Gilandeh Yousef,García-Mateos GinésORCID,Ruiz-Canales Antonio,Molina-Martínez José Miguel

Abstract

Due to the changes in the lighting intensity and conditions throughout the day, machine vision systems used in precision agriculture for irrigation management should be prepared for all possible conditions. For this purpose, a complete segmentation algorithm has been developed for a case study on apple fruit segmentation in outdoor conditions using aerial images. This algorithm has been trained and tested using videos with 16 different light intensities from apple orchards during the day. The proposed segmentation algorithm consists of five main steps: (1) transforming frames in RGB to CIE L*u*v* color space and applying thresholds on image pixels; (2) computing texture features of local standard deviation; (3) using intensity transformation to remove background pixels; (4) color segmentation applying different thresholds in RGB space; and (5) applying morphological operators to refine the results. During the training process of this algorithm, it was observed that frames in different light conditions had more than 58% color sharing. Results showed that the accuracy of the proposed segmentation algorithm is higher than 99.12%, outperforming other methods in the state of the art that were compared. The processed images are aerial photographs like those obtained from a camera installed in unmanned aerial vehicles (UAVs). This accurate result will enable more efficient support in the decision making for irrigation and harvesting strategies.

Funder

Iran National Science Foundation

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3