On the Information Advantage of Sidescan Sonar Three-Frequency Colour over Greyscale Imagery

Author:

Tamsett DuncanORCID,McIlvenny Jason,Baxter James,Gois Paulo,Williamson BenjaminORCID

Abstract

A prototype three-frequency (114, 256, and 410 kHz) colour sidescan sonar system, built by Kongsberg Underwater Mapping Ltd. (Great Yarmouth, UK), was previously described, and preliminary results presented, in Tamsett, McIlvenny, and Watts. The prototype system has subsequently been modified, and in 2017, new data were acquired in a resurvey of the Inner Sound of the Pentland Firth, North Scotland. An image texture characterisation and image classification exercise demonstrates considerably greater discrimination between different seabed classes in a three-frequency colour sonar image of the seabed, than in a multi-frequency colour image reduced to greyscale display, or in a single-frequency greyscale image, with readily twice the number of classes of seabed discriminated between, in the colour image. The information advantage of colour acoustic imagery over greyscale acoustic imagery is analogous to the information advantage of colour television images over black-and-white television images. A three-frequency colour sonar image contains a theoretical maximum of a factor of 3 times the information in a corresponding greyscale image, for independent seabed responses at the three frequencies. Estimates of the average information per pixel (information entropy) in the colour image, and in corresponding greyscale images, reveal an actual information advantage of colour sonar imagery over greyscale, to be in practice approximately a factor of 2.5, empirically confirming the greater information based utility of three-frequency colour sonar over greyscale sonar. Reference: Tamsett, D.; McIlvenny, J.; Watts, A. J. Mar. Sci. Eng. 2016, 4(26).

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3