Author:
Sun Zhen-Zhou,Bi Chun-Wei,Zhao Sheng-Xiao,Dong Guo-Hai,Yu Hua-Feng
Abstract
Offshore wind power is gradually developing to more open sea. Considering the economy of power transmission, it will be an inevitable choice to adopt the extra-large electrical platform. The offshore electrical platform is easily affected by sudden extreme loads such as earthquake and high current loads. With a large volume of electrical equipment arranged on the deck, the offshore electrical platform is characterized as a top-heavy structure in the offshore wind farm. The dynamic effect of the structure will aggravate the vibration problem of the structure. In this paper, a physical model test was carried out to study the dynamic characteristics of the electrical platform of a 10,000-ton offshore converter station under seismic load. The acceleration response, displacement response and stress response of the offshore electrical platform under the typical direction of seismic action were obtained. The effect of the dry–wet environment, mode of seismic excitation, whipping effect and weak positions of electrical platform structure were analyzed. It was determined that the average damping ratio of the first-order mode of the electrical platform was 5.73% and 8.68% with and without water, respectively. The bidirectional seismic excitation was more dangerous to the structure than unidirectional excitation. The peak acceleration along the height of the platform showed a typical whipping effect.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献