Similarity Study of Electromagnetic and Underwater Acoustic Scattering by Three-Dimensional Targets in Unbounded Space

Author:

Wang Jie1ORCID,Lin Hai1,Guo Huaihai2,Zhang Qi2ORCID,Ge Junxiang13

Affiliation:

1. School of Electronics and Information, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Institute of Electronics Information Technology and System, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

The characterization of targets by electromagnetic (EM) scattering and underwater acoustic scattering is an important object of research in these two related fields. However, there are some difficulties in the simulation and measurement of the scattering by large targets. Consequently, a similarity study between acoustic and EM scattering may help to share results between one domain and the other and even provide a general reference method for the simulation of scattering characteristics in both fields. Based on the method of physical optics, the similarity between the EM scattering of conductors and the acoustic scattering of soft/hard targets and the similarity between the EM scattering of dielectrics and the acoustic scattering of elastics are studied. In particular, we derive how to transfer quantities from one domain into another so that similar scattering patterns arise. Then, according to these transfer rules, the EM scattering and acoustic scattering of three typical targets with different types of boundaries were simulated and measured, and the simulated EM scattering and acoustic scattering curves were found to be in perfect agreement, with correlation coefficients above 0.93. The correlation coefficients between the electromagnetic and acoustic scattering patterns were above 0.98, 0.91, and 0.65 for three typical targets. The simulated and measured scattering results verify the proposed similarity theory of EM and acoustic scattering, including the transfer from one domain into the other and the conditions of EM and acoustic scattering, and illustrate that the acoustic scattering characteristic of the target can be simulated using the EM scattering based on the derived conditions and vice versa.

Funder

National Natural Science Foundation of China

Jiangsu Innovation and Entrepreneurship Group Talents Plan

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3