Long-Term Contamination of the Arabian Gulf as a Result of Hypothetical Nuclear Power Plant Accidents

Author:

Maderich Vladimir1ORCID,Bezhenar Roman1ORCID,Kovalets Ivan1ORCID,Khalchenkov Oleksandr1,Brovchenko Igor1

Affiliation:

1. Institute of Mathematical Machine and System Problems, 03187 Kyiv, Ukraine

Abstract

Long-term consequences of radionuclide contamination of the Arabian Gulf as a result of hypothetical accidents at the Bushehr and Barakah nuclear power plants (NPPs) were studied using a chain of models including the atmospheric dispersion model RIMPUFF, the marine compartment model POSEIDON-R, and the dose model. The compartment model POSEIDON-R is complemented by a dynamic model of the biota food chain that includes both pelagic and benthic organisms. The source terms for the hypothetical releases of the selected radionuclides (134Cs, 137Cs, 106Ru, and 90Sr) in the atmosphere were defined as a fraction of respective reactor inventories available in the literature. Conservative meteorological scenarios for the calculation of the initial depositions of radionuclides were selected. Because the Gulf is shallow, a significant portion of the reactive radionuclides (134Cs, 137Cs, 106Ru) remain in the bottom sediments and continue to contaminate water and benthic organisms for a long period of time. The annual dose due to the consumption of marine products can exceed 1 mSv, whereas the annual dose due to drinking the water from desalination plants is expected to be an order less. The contribution of elements to the dose depends on the type of reactor. This is manifested in differences between the contributions of different marine organisms to the dose.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3