When Does a Light Sphere Break Ice Plate Most by Using Its Net Buoyance?

Author:

Ni Bao-Yu1ORCID,Tan Hao1,Di Shao-Cheng1,Zhang Chen-Xi1,Li Zhiyuan2ORCID,Huang Luofeng3ORCID,Xue Yan-Zhuo1

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

2. Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

3. School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK

Abstract

A free-rising buoyant sphere can break an ice plate floating above it. The problem is when the light sphere breaks the ice plate most, or the optimal relative density of the sphere which can break the ice plate the most severely. This experimental study was done to answer this problem. A set of experimental devices were designed, and a high-speed camera system was adopted to record the whole dynamic process, including the free-rising of the sphere, the collision between the sphere and the ice plate, the crack initiation and propagation, as well as the breakup of the ice plate. The failure mode of the ice plate under impact load was analyzed. It was found that conical cracks were formed under the reflected tensile wave at the top surface of the ice plate. On this basis, the influences of ice thickness, the initial submergence depth, and the relative density of the sphere on icebreaking were further investigated. An optimal relative density of the sphere was found when the sphere was released at a certain initial submergence depth, at which point the ice was damaged the most severely. For example, when the dimensionless initial submergence depth of the sphere was 2.31, the optimal relative density of the sphere was close to 0.4, with the probability of the ice plate breakup as high as 91.7%. It was also found from the experiments that the degree of damage to the ice plate correlated well with the kinetic energy of the sphere just before collision. Results showed that the optimal relative density can be estimated by theoretical analysis of the kinetic energy of the sphere, which will provide a reference for potential icebreaking applications in the future.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3