Experimental and Numerical Investigation of Cavity Structure Forced Water Exit from Calm Water at Constant Lifting Velocity

Author:

Zan Yingfei1ORCID,Qi Baowen1,Ding Song2,Guo Ruinan1,Wang Yong3,Li Baozhong4

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

2. China Ship Research and Development Academy, Beijing 100192, China

3. COOEC Subsea Technology Co., Ltd., Shenzhen 518000, China

4. China Classification Society Tianjin Branch, Tianjin 300457, China

Abstract

In marine engineering, the installation of structures inevitably involves the process of water exit. This paper studies the vertical force, the shape of the free surface, and the evolution of the water entrained in a cavity in the process of lifting a structure, so as to provide guidance for practical engineering operations. Using a 1:8 experimental model, this paper derives the governing equations based on the Reynolds-averaged Navier–Stokes approach and uses the volume of fluid method to capture the shape change of the free surface. The vertical forces obtained at different lifting speeds are found to be in good agreement with the results of previous model tests. The results show that the numerical simulation method and mesh generation described in this paper can simulate the changes in the physical quantities associated with the structure in the process of water exit. The vertical force on the structure increases nonlinearly as the lifting speed rises, and the maximum lifting speed is conservatively estimated to be 0.034 m/s using the Det Norske Veritas recommended method. The maximum vertical force occurs as the whole structure leaves the water. The water entrained in the structure is mainly located at the sides and bottom. The lifting velocity plays an important role in the water exit process. The water exit force first increases and then decreases to a stable value as the lifting velocity increases, while the maximum water exit force increases nonlinearly.

Funder

the Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3