The Analysis of Cavitation Flow and Pressure Pulsation of Bi-Directional Pump

Author:

Liu Haiyu1,Tang Fangping1,Shi Lijian1ORCID,Dai Liang2,Shen Jie2,Liu Jian2

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China

2. Yangzhou Survey Design Research Institute Co., Ltd., Yangzhou 225000, China

Abstract

A bi-directional pump is designed by using S-shaped hydrofoil, is the most convenient way to achieve bi-directional operation. In this paper, high-speed photography is used to visualize the flow field characteristics of the bidirectional pump under different cavitation numbers, and the flow field changes caused by cavitation are quantitatively analyzed in combination with the pressure pulsation sensor. The results show that the operation efficiency of the bidirectional pump in reverse operation is lower than that in forward operation. Tip clearance cavitation occurs on both suction and pressure surfaces of the impeller under reverse operation and large flow. In reverse operation, the influence of guide vane on the main frequency of pressure pulsation in the impeller is obvious. The quasi-periodic vertical cavitation flow phenomenon increases the amplitude of pressure pulsation in the impeller and becomes the main component of the internal flow in the bidirectional axial flow pump.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3