An OFDM-Based Frequency Domain Equalization Algorithm for Underwater Acoustic Communication with a High Channel Utilization Rate

Author:

Feng Chengxu1,Luo Yasong1,Zhang Jianqiang1,Li Houpu2

Affiliation:

1. College of Weapon Engineering, Naval University of Engineering, Wuhan 430033, China

2. College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China

Abstract

The underwater acoustic communication technique for high-speed and highly reliable information transmission in the ocean has been one of the popular research focuses facing the fast-growing information technology sector and the accelerating development of ocean resources. In order to achieve a high information transmission rate with limited underwater acoustic channel bandwidth, researchers have paid much attention to the underwater acoustic communication technique based on orthogonal frequency division multiplexing (OFDM). A traditional OFDM-based frequency domain equalization algorithm relies on cyclic prefixes for the effective resistance to the multipath effect of an underwater acoustic channel. However, a redundant cyclic prefix may lead to a severe waste of energy and bandwidth in the underwater acoustic system if it is too long. The high utilization rate of OFDM signal channel will not be practically achieved in this case. Based on the limitations of the existing frequency domain equalization algorithm, this paper studied the influence of the multipath effect on the OFDM signal transmission. Subsequently, the principles of the OFDM-based frequency domain equalization were further explored for an improved structural model design of the communication system. On this basis, a novel frequency domain adaptive equalization algorithm was put forward. In addition, the proposed algorithm was optimized to address the problem of increased computation. The simulation results proved that the novel frequency domain equalization algorithm delivers a better symbol error ratio than the existing algorithm, and the compensation for the multipath effect through frequency selective fading. The proposed algorithm can realize the information transmission at a low symbol error ratio when fewer cyclic prefixes are used, so that it takes up a lower number of channels with cyclic prefixes in the OFDM communication system.

Funder

National Science Foundation for Outstanding Young Scholars

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3