Optimization on Hydrodynamic Performance for First Level Energy-Capturing Enhancement of a Floating Wave Energy Converter System with Flapping-Panel-Slope

Author:

Song Tianyu1,Li Ze2,Zheng Honghao3,Liang Chujin2,Wan Zhanhong2

Affiliation:

1. Hangzhou Applied Acoustics Research Institute, Hangzhou 310023, China

2. Ocean College, Zhejiang University, Zhoushan 316021, China

3. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Abstract

Based on the wave reflection principle, a floating flapping-panel wave energy converter was developed. The feasibility study and optimization study of the new WEC was carried out by laboratory research and computational fluid dynamics techniques. A numerical model was developed for an in-depth study to establish the relationship between slope tilt angle and power. The results for different wave periods show that the power take-off damping coefficient has a significant effect on the power. Meanwhile, the effects of flap length and wave height on converter resonance and power are investigated. Finally, a preliminary laboratory physical model test of the device is conducted. The flapping-panel-slope structure is very feasible and effective with good hydrodynamic performance.

Funder

National Natural Science Foundation of China

Education Department Foundation of Liaoning Province

National Key Research & Development Plan of China

Public Science and Technology Research Funds Projects of Ocean

Program for Zhejiang Leading Team of S & T Innovation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Offshore Renewables for a Transition to a Low Carbon Society;Journal of Marine Science and Engineering;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3