UMGAN: Underwater Image Enhancement Network for Unpaired Image-to-Image Translation

Author:

Sun Boyang1234,Mei Yupeng1234,Yan Ni1234,Chen Yingyi1234ORCID

Affiliation:

1. National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China

2. Key Laboratory of Smart Farming Technologies for Aquatic Animal and Livestock, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

3. Beijing Engineering and Technology Research Centre for the Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China

4. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

Abstract

Due to light absorption and scattering underwater images suffer from low contrast, color distortion, blurred details, and uneven illumination, which affect underwater vision tasks and research. Therefore, underwater image enhancement is of great significance in vision applications. In contrast to existing methods for specific underwater environments or reliance on paired datasets, this study proposes an underwater multiscene generative adversarial network (UMGAN) to enhance underwater images. The network implements unpaired image-to-image translation between the underwater turbid domain and the underwater clear domain. It has a great enhancement impact on several underwater image types. Feedback mechanisms and a noise reduction network are designed to optimize the generator and address the issue of noise and artifacts in GAN-produced images. Furthermore, a global–local discriminator is employed to improve the overall image while adaptively modifying the local region image effect. It resolves the issue of over- and underenhancement in local regions. The reliance on paired training data is eliminated through a cycle consistency network structure. UMGAN performs satisfactorily on various types of data when compared quantitatively and qualitatively to other state-of-the-art algorithms. It has strong robustness and can be applied to various enhancement tasks in different scenes.

Funder

National Natural Science Foundation of China

Beijing Digital Agriculture Innovation Consortium Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3