Investigation on the Influence of Flap Valve Area on Transition Process of Large Axial Flow Pump System

Author:

Zhang Xiaowen1,Jiang Yuhang1,Song Xijie1,Tang Fangping1,Dai Jian2,Yang Fan1ORCID,Wang Hai3,Shi Lijian1ORCID

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Taihu Lake Water Conservancy Project Management Office, Suzhou 215000, China

3. Jiangsu Provincial Irrigation Canal Management Office, Huai’an 223200, China

Abstract

The large axial flow pump systems used in coastal pump stations are often required to add flap valves to the gates to improve the quality of the transition process. However, due to the unclear mechanism of the additional flap valve on the transition process of the large axial flow pump system, there are many difficulties in the design and application of this feature. In this paper, six kinds of flap valves with different areas are designed. On the basis of the secondary development of the Flomaster software, the transient simulation method is used to study the impact of flap valves with different areas on the large axial flow pump system synchronous start-up process, the asynchronous start-up process, the synchronous stop process and the asynchronous stop process. The research results show that when the AOF is less than 38% Ag during the asynchronous startup, increasing the AOF can significantly improve the shunt ability of the flap valve during startup. However, in the process of asynchronous starting, the working capacity of the flap valve is less affected by the AOF. During the asynchronous shutdown process, the additional flap valve can effectively delay the attenuation of the LAPS flow and reduce the instantaneous head and power. However, when the AOF reaches 38% Ag, further increasing the AOF has no obvious gain in reducing the maximum instantaneous head and power of the LAPS. When the AOF increases from 38% Ag to 49% Ag, the maximum instantaneous head and the power of the LAPS only decrease by 2.7% and 1.4%, respectively.

Funder

National Natural Science Foundation of China

Scientific and Technological Research and Development Program of South-to-North Water Transfer in Jiangsu Province

Jiangsu Water Conservancy Science and Technology Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Study on Fluid Dynamic Characteristics of a Cross-Flow Fan;Journal of Marine Science and Engineering;2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3