NDVI Response to Satellite-Estimated Antecedent Precipitation in Dryland Pastures

Author:

Brieva Carlos12,Saco Patricia M.1ORCID,Sandi Steven G.13ORCID,Mora Sebastián2,Rodríguez José F.1

Affiliation:

1. Centre for Water Security and Environmental Sustainability, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia

2. Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Rama Caída, Mendoza 5600, Argentina

3. School of Engineering, Deakin University, Geelong, VIC 3216, Australia

Abstract

Precipitation is a critical driver of vegetation productivity and dynamics in dryland environments, especially in areas with intense livestock farming. Availability and access to accurate, reliable, and timely rainfall data are essential for natural resources management, environmental monitoring, and informing hydrological rainfall-runoff models. Gauged precipitation data in drylands are often scarce, fragmented, and with low spatial resolution; therefore, satellite-estimated precipitation becomes a valuable dataset for overcoming this constraint. Using statistical indices, we compared satellite-derived precipitation data from four products (CHIRPS, GPM, TRMM, and PERSIANN-CDR) against gauged data at different temporal scales (daily, monthly, and yearly). Spatial correlations were calculated for GPM and CHIRPS estimates against interpolated gauged precipitation. We then estimated NDVI response to Antecedent Accumulated Precipitation (AAP) for 1, 3, 6, 9, and 12 months of four major vegetation types typical of the region. Statistical metrics varied with temporal scales being highest and acceptable for periods of 1 month or 1 year. At monthly scale GPM presented the best Pearson’s Correlation Coefficient (r), Root Mean Square Error (RMSE) and RMSE-observations standard deviation ratio (RSR) and CHIRPS resulted in lower Mean Error (ME) and Bias. On an annual basis CHIRPS showed the best adjustment for all indicators except for r. NDVI responses to 3 months of AAP were significant for all vegetation types in the study area. The findings of this study show that estimated precipitation data from GPM and CHIRPS satellites are accurate and valuable as a tool for analysing the relationships between precipitation and vegetation in the drylands of Mendoza.

Funder

University of Newcastle

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3