Assessing Models of Sea Level Rise and Mean Sea Surface with Sentinel-3B and Jason-3 Altimeter Data near Taiwan: Impacts of Data Quality and Length

Author:

Hsiao Yu-Shen1,Hwang Cheinway2ORCID,Chen Te-Wei2,Cho Yu-Hsuan1

Affiliation:

1. Department of Soil and Water Conservation, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan

2. Department of Civil Engineering, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan

Abstract

Studying the local sea level rise (SLR) is vital for coastal sustainability and resilience amid climate change. Using the latest altimeter data from the Sentinel-3B (S3B) and Jason-3 (J3) missions, we investigated the regional variability and accuracy of SLR rates around Taiwan and evaluated the accuracies of three mean sea surface (MSS) models: NCTUMSS, CLS15, and DTU18. NCTUMSS is a regional model for defining the new depth datum of Taiwan. The least-squares method with outlier removal was used to compute the along-track SLRs and MSS heights from S3B and J3. Our results show that the SLR rates around Taiwan in the recent 3–6 years from S3B and J3 were 2.0–3.0 mm/year higher than the global rate of 3.3 mm/year. Positive SLR rates were observed in most waters around Taiwan, but negative rates occurred in some parts of the Taiwan Strait. Short-term SLR rates from S3B and J3 were significantly different from the long-term rates determined using altimeter data from the TOPEX/POSEIDON (TP), Jason-1, Jason-2, and J3 missions from 1992.96 to 2021.92. The comparison between the along-track MSS heights from S3B and J3 and the modeled MSS heights showed that CLS15 had the highest accuracy. The DTU18 model exhibited lower sea surface heights near Penghu in the Taiwan Strait compared with CLS15 and NCTUMSS. The NCTUMSS model incorporates tide gauge measurements and Taiwan’s hybrid geoid for a smooth transition from ocean to land. It was concluded that the SLR rates around Taiwan were not uniform, and the rates provided by the three global models, as well as the along-track S3B and J3 altimeter data, suffered from problems like limited spatial resolutions and accuracies, which originated from limited altimeter data qualities and record lengths. One must be cautious about the accuracy of an MSS model for constructing a depth datum and the accuracy of an SLR model for mitigating SLR-induced hazards. We recommend updating the MSS model around Taiwan every 7 years to ensure a 2 cm accuracy requirement, considering the average SLR rate of 3.3 mm/year around Taiwan. Short-term data reflects recent sea level rise but lacks accuracy, while the long-term sea level record may be more precise but may not capture recent rates, necessitating a comprehensive approach that considers both factors for producing accurate assessments and the planning of sea level rise impacts.

Funder

National Science and Technology Council of Taiwan

Ministry of the Interior, Taiwan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. Sea-level rise and its impact on coastal zones;Nicholls;Science,2010

2. Sea-level rise and its possible impacts given a beyond 4 C world in the twenty-first century;Nicholls;Philos. Trans. R. Soc. A,2011

3. The rate of sea-level rise;Cazenave;Nat. Clim. Chang.,2014

4. Prediction of sea level change in Japanese coast using singular spectrum analysis and autoregression moving average;Niu;Chin. J. Geophys.,2020

5. Seas are rising faster than ever;Voosen;Science,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3