Depth Information Precise Completion-GAN: A Precisely Guided Method for Completing Ill Regions in Depth Maps

Author:

Qian Ren1,Qiu Wenfeng1,Yang Wenbang1,Li Jianhua1,Wu Yun1,Feng Renyang2,Wang Xinan3,Zhao Yong13

Affiliation:

1. College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

2. School of Information, Guizhou University of Finance and Economics, Guiyang 550031, China

3. School of Electronic and Computer Engineering, Shenzhen Graduate School of Peking University, Shenzhen 518055, China

Abstract

In the depth map obtained through binocular stereo matching, there are many ill regions due to reasons such as lighting or occlusion. These ill regions cannot be accurately obtained due to the lack of information required for matching. Since the completion model based on Gan generates random results, it cannot accurately complete the depth map. Therefore, it is necessary to accurately complete the depth map according to reality. To address this issue, this paper proposes a depth information precise completion GAN (DIPC-GAN) that effectively uses the Guid layer normalization (GuidLN) module to guide the model for precise completion by utilizing depth edges. GuidLN flexibly adjusts the weights of the guiding conditions based on intermediate results, allowing modules to accurately and effectively incorporate the guiding information. The model employs multiscale discriminators to discriminate results of different resolutions at different generator stages, enhancing the generator’s grasp of overall image and detail information. Additionally, this paper proposes Attention-ResBlock, which enables all ResBlocks in each task module of the GAN-based multitask model to focus on their own task by sharing a mask. Even when the ill regions are large, the model can effectively complement the missing details in these regions. Additionally, the multiscale discriminator in the model enhances the generator’s robustness. Finally, the proposed task-specific residual module can effectively focus different subnetworks of a multitask model on their respective tasks. The model has shown good repair results on datasets, including artificial, real, and remote sensing images. The final experimental results showed that the model’s REL and RMSE decreased by 9.3% and 9.7%, respectively, compared to RDFGan.

Funder

Science and Technology Planning of Shenzhen

Technology Research and Development Fund

National Natural Science Foundation of China

Science and Technology Foundation of Guizhou Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3