The Spatio-Temporal Changes of Small Lakes of the Qilian Mountains from 1987 to 2020 and Their Driving Mechanisms

Author:

Li Chao12ORCID,Zhang Shiqiang12ORCID,Chen Rensheng13ORCID,Zhang Dahong12ORCID,Zhou Gang12,Li Wen12,Rao Tianxing12

Affiliation:

1. College of Urban and Environmental Science, Northwest University, Xi’an 710127, China

2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China

3. Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

Small lakes (areas ranging from 0.01 km2 to 1 km2) are highly sensitive to climate change and human activities. However, few studies have investigated the long-term intra-annual trends in the number and area of small lakes and their driving mechanisms in the Qinghai–Tibet Plateau (QTP). As a significant water tower in northwest China, the Qilian Mountains region (QMR) in the QTP is essential for sustaining regional industrial and agricultural production, biodiversity, and human well-being. We conducted an analysis of the dynamics of small lakes in the QMR region. In this study, we employed Geodetector and examined nine factors to investigate the driving mechanisms behind the long-term variations in the small lake water bodies (SLWBs). We specifically focused on understanding the effects of single-factor and two-factor interactions. The results indicate that the number and area of small lakes had a fluctuating trend from 1987 to 2020. Initially, there was a decrease followed by an increase, which was generally consistent with trends in the large lakes on the QTP. All basins had far more expanding than shrinking lakes. The area of seasonal SLWBs in each basin was increasing more rapidly than permanent SLWBs. The distribution and trends in the area and number of small lakes varied widely across elevation zones. Runoff, snow depth, and temperature contributed the most to SLWB changes. Human activities and wind speed contributed the least. However, the main drivers varied across basins. The impact of two-factor interactions on SLWB changes in basins was greater than that of single factors. Our results provide useful information for planning and managing water resources and studies of small lakes.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

China National Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3