Urban Flood Risk Assessment through the Integration of Natural and Human Resilience Based on Machine Learning Models

Author:

Zhang Wenting12,Hu Bin1,Liu Yongzhi34,Zhang Xingnan1,Li Zhixuan1

Affiliation:

1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

2. The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

3. Hydrology and Water Resources Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China

4. The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, NHRI, Nanjing 210029, China

Abstract

Flood risk assessment and mapping are considered essential tools for the improvement of flood management. This research aims to construct a more comprehensive flood assessment framework by emphasizing factors related to human resilience and integrating them with meteorological and geographical factors. Moreover, two ensemble learning models, namely voting and stacking, which utilize heterogeneous learners, were employed in this study, and their prediction performance was compared with that of traditional machine learning models, including support vector machine, random forest, multilayer perceptron, and gradient boosting decision tree. The six models were trained and tested using a sample database constructed from historical flood events in Hefei, China. The results demonstrated the following findings: (1) the RF model exhibited the highest accuracy, while the SVR model underestimated the extent of extremely high-risk areas. The stacking model underestimated the extent of very-high-risk areas. It should be noted that the prediction results of ensemble learning methods may not be superior to those of the base models upon which they are built. (2) The predicted high-risk and very-high-risk areas within the study area are predominantly clustered in low-lying regions along the rivers, aligning with the distribution of hazardous areas observed in historical inundation events. (3) It is worth noting that the factor of distance to pumping stations has the second most significant driving influence after the DEM (Digital Elevation Model). This underscores the importance of considering human resilience factors. This study expands the empirical evidence for the ability of machine learning methods to be employed in flood risk assessment and deepens our understanding of the potential mechanisms of human resilience in influencing urban flood risk.

Funder

Natural Science Foundation of China

Special Basic Research Key Fund for Central Public Scientific Research Institutes

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3