Graphene Architecture-Supported Porous Cobalt–Iron Fluoride Nanosheets for Promoting the Oxygen Evolution Reaction

Author:

Lu Yanhui1,Han Xu1,Zhang Yiting1,Yu Xu1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China

Abstract

The design of efficient oxygen evolution reaction (OER) electrocatalysts is of great significance for improving the energy efficiency of water electrolysis for hydrogen production. In this work, low-temperature fluorination and the introduction of a conductive substrate strategy greatly improve the OER performance in alkaline solutions. Cobalt–iron fluoride nanosheets supported on reduced graphene architectures are constructed by a one-step solvothermal method and further low-temperature fluorination treatment. The conductive graphene architectures can increase the conductivity of catalysts, and the transition metal ions act as electron acceptors to reduce the Fermi level of graphene, resulting in a low OER overpotential. The surface of the catalyst becomes porous and rough after fluorination, which can expose more active sites and improve the OER performance. Finally, the catalyst exhibits excellent catalytic performance in 1 M KOH, and the overpotential is 245 mV with a Tafel slope of 90 mV dec−1, which is better than the commercially available IrO2 catalyst. The good stability of the catalyst is confirmed with a chronoamperometry (CA) test and the change in surface chemistry is elucidated by comparing the XPS before and after the CA test. This work provides a new strategy to construct transition metal fluoride-based materials for boosted OER catalysts.

Funder

‘Six Talent Peaks Project’ in Jiangsu Province

‘High-End Talent Project’ of Yangzhou University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3