A Nanoporous Polymer Modified with Hexafluoroisopropanol to Detect Dimethyl Methylphosphonate

Author:

Wang Xuming1,Li Xin1ORCID,Wu Qiang1,Yuan Yubin1,Liu Weihua1ORCID,Han Chuanyu1,Wang Xiaoli2

Affiliation:

1. Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Physics, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The increasing threat of nerve agents has prompted the need for gas sensors with fast response, high sensitivity, and good stability. In this work, the hexafluoroisopropanol functional group was modified on a porous aromatic framework material, which served as a sensitive material for detecting dimethyl methylphosphonate. A nerve agent sensor was made by coating sensitive materials on a surface acoustic wave device. Lots of pores in sensitive materials effectively increase the specific surface area and provide channels for diffusion of gas molecules. The introduction of hexafluoroisopropanols enables the sensor to specifically adsorb dimethyl methylphosphonate and improves the selectivity of the sensor. As a result, the developed gas sensor was able to detect dimethyl methylphosphonate at 0.8 ppm with response/recovery times of 29.8/43.8 s, and the detection limit of the gas sensor is about 0.11 ppm. The effects of temperature and humidity on the sensor were studied. The results show that the baseline of the sensor has a linear relationship with temperature and humidity, and the temperature and humidity have a significant effect on the response of the sensor. Furthermore, a device for real-time detection of nerve agent is reported. This work provides a new strategy for developing a gas sensor for detecting nerve agents.

Funder

National Natural Science Foundation of China

National Defense Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3