Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna

Author:

Ku Yun-Cheng12ORCID,Kuo Mao-Kuen2ORCID,Liaw Jiunn-Woei134ORCID

Affiliation:

1. Department of Mechanical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Taoyuan 333, Taiwan

2. Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan

3. Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan

4. Proton and Radiation Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan

Abstract

The streamlines of the energy flux (Poynting vectors) and chirality flux as well as the intensity of the electric field around various plasmonic nanostructures (nanocube, nanocuboid, nanotriangle, hexagonal nanoplate and bowtie nanoantenna) induced by a circularly polarized (CP) or linearly polarized (LP) light were studied theoretically. The boundary element method combined with the method of moment was used to solve a set of surface integral equations, based on the Stratton–Chu formulation, for analyzing the highly distorted electromagnetic (EM) field in the proximity of these nanostructures. We discovered that the winding behavior of these streamlines exhibits versatility for various modes of the surface plasmon resonance of different nanostructures. Recently, using plasmonic nanostructures to facilitate a photochemical reaction has gained significant attention, where the hot carriers (electrons) play important roles. Our findings reveal a connection between the flow pattern of energy flux and the morphology of the photochemical deposition around various plasmonic nanostructures irradiated by a CP light. For example, numerical results exhibit vertically helical streamlines of the Poynting vector around an Au nanocube and transversely twisted-roll streamlines around a nanocuboid. Additionally, the behaviors of the winding energy and chirality fluxes at the gap and corners of a plasmonic bowtie nanoantenna, implying a highly twisted EM field, depend on the polarization of the incident LP light. Our analysis of the streamlines of the Poynting vector and chirality flux offers an insight into the formation of plasmon-enhanced photocatalysis.

Funder

National Science and Technology Council, Taiwan

Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3