A Two-Step Surface Modification Methodology for the Advanced Protection of a Stone Surface

Author:

Marinescu Liliana1,Motelica Ludmila1ORCID,Ficai Denisa2ORCID,Ficai Anton13ORCID,Oprea Ovidiu Cristian23ORCID,Andronescu Ecaterina13ORCID,Holban Alina-Maria4

Affiliation:

1. Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania

2. Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania

3. Academy of Romanian Scientists, Ilfov Street 3, 050054 Bucharest, Romania

4. Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, District 5, 77206 Bucharest, Romania

Abstract

The biodeterioration of the natural surface on monuments, historical buildings, and even public claddings brings to the attention of researchers and historians the issues of conservation and protection. Natural stones undergo changes in their appearance, being subjected to deterioration due to climatic variations and the destructive action of biological systems interfering with and living on them, leading to ongoing challenges in the protection of the exposed surfaces. Nanotechnology, through silver nanoparticles with strong antimicrobial effects, can provide solutions for protecting natural surfaces using specific coupling agents tailored to each substrate. In this work, surfaces of two common types of natural stone, frequently encountered in landscaping and finishing works, were modified using siloxane coupling agents with thiol groups. Through these agents, silver nanoparticles (AgNPs) were fixed, exhibiting distinct characteristics, and subjected to antimicrobial analysis. This study presents a comparative analysis of the efficiency of coupling agents that can be applied to a natural surface with porous structures, when combined with laboratory-obtained silver nanoparticles, in reducing the formation of microbial biofilms, which are a main trigger for stone biodeterioration.

Funder

Acoperiri nanostructurate inovatoare de lungă durată pentru conservarea patrimoniului

National Centre for Micro and Nanomaterials

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3