Immersion-Driven Structural Evolution of NiFeS Nanosheets for Efficient Water Splitting

Author:

Wang Jianfeng1,Zhao Bingbing2,Chen Xiao2,Liu Haixia2,Zhang Jie2ORCID

Affiliation:

1. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, China

2. Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

The development of low-cost, highly active, and stable electrocatalytic water-splitting catalysts is crucial to solving the current energy crisis and environmental pollution. Herein, a simple two-step conversion strategy is proposed to successfully prepare NiFeS nanosheet structure catalyst through the “immersion-sulfurization” strategy. The self-supported electrode can be prepared in large quantities due to its simple preparation process. As an active substance, NiFeS can grow directly on the NiFe foam substrate, avoiding the use of adhesives or conductive agents, and directly used as electrodes. The as-obtained NiFeS/NFF-300 displays efficient catalytic activity in electrocatalytic water splitting. The overpotential required for OER of the NiFeS/NFF-300 electrode at a current density of 10 mA cm−2 is 230 mV. The electrode underwent a stability test at 10 mA cm−2 for 24 h, and the overpotential remained essentially unchanged, demonstrating excellent stability. Moreover, NiFeS/NFF-300 exhibits considerable HER performances compared with NiFeC2O4/NFF and NiFe foam. The unique nanosheet structure and the presence of Niδ+ and Ni2+ formed by NiFe foam substrate on the NiFeS surface are responsible for its excellent electrocatalytic activity.

Funder

National Natural Science Foundation of China

Talent and Scientific Research Project from Qilu University of Technology

Quasi in situ multifunctional development for nano-mechanical testing system

Science-Education-Industry Integration Pilot Project

Industry-University-Research Collaborative Innovation Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3