Highly Conducting Surface-Silverized Aromatic Polysulfonamide (PSA) Fibers with Excellent Performance Prepared by Nano-Electroplating

Author:

Bai Ruicheng12,Zhang Pei1,Wang Xihai2,Zhang Hengxin1,Wang Hao2,Shao Qinsi2

Affiliation:

1. Research Center for Composite Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China

2. Institute for Sustainable Energy, School of Sciences, Shanghai University, Shanghai 200444, China

Abstract

In this work, bilayer nanocoatings were designed and constructed on high-performance aromatic polysulfonamide (PSA) fibers for robust electric conduction and electromagnetic interference (EMI) shielding. More specifically, PSA fibers were first endowed with necessary electric conductivity via electroless nickel (Ni) or nickel alloy (Ni-P-B) plating. Afterward, silver electroplating was carried out to further improve the performance of the composite. The morphology, microstructure, environmental stability, mechanical properties, and EMI shielding performance of the proposed cladded fibers were thoroughly investigated to examine the effects of electrodeposition on both amorphous Ni-P-B and crystalline Ni substrates. The acquired results demonstrated that both PSA@Ni@Ag and PSA@Ni-P-B@Ag composite fibers had high environment stability, good tensile strength, low electric resistance, and outstanding EMI shielding efficiency. This indicates that they can have wide application prospects in aviation, aerospace, telecommunications, and military industries. Furthermore, the PSA@Ni-P-B@Ag fiber configuration seemed more reasonable because it exhibited smoother and denser silver surfaces as well as stronger interfacial binding, leading to lower resistance (185 mΩ cm−1) and better shielding efficiency (82.48 dB in the X-band).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3