Algal-Bacterial Symbiosis System Treating High-Load Printing and Dyeing Wastewater in Continuous-Flow Reactors under Natural Light

Author:

Lin Chao,Cao PengORCID,Xu Xiaolin,Ye Bangce

Abstract

This study investigated the symbiotic structure relationship between mixed algae andactivated sludge while treating high-load printing and dyeing wastewater under natural light. Theeffects of hydraulic retention time (HRT) (12 h, 16 h and 20 h) and aeration rate (0.1–0.15, 0.4–0.5and 0.7–0.8 L/min) on algal–bacterial symbiosis (ABS) and conventional activated sludge (CAS)systems. Experimental results showed that the ABS system exhibited the best removal performancefor chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total phosphorus (TP),which was increased by 12.5%, 23.1% and 10.5%, respectively, and reduced colour 80 timescompared with the printing and dyeing wastewater treatment plant. Algae growth could bepromoted under lower dissolved oxygen (DO), and the addition of algae could provide more DO tothe ABS system. The particle size distribution of sludge in the ABS system was stable, whichguaranteed a stable treatment effect. In addition, the COD and colour could be further degradedunder the conditions of no external carbon source and longer HRT. It is expected that the presentstudy will provide a foundation for the practical application of the ABS system, and new insightsfor the treatment of printing and dyeing wastewater.

Funder

Scientific Research Foundation for Changjiang Scholars of Shihezi University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3