Abstract
Recent studies have demonstrated that strigolactones (SLs) also participate in the regulation of stress adaptation; however, the regulatory mechanism remains elusive. In this study, the homolog of More Axillary Branches 2, which encodes a key component in SL signaling, in the perennial oil plant Sapium sebiferum was identified and functionally characterized in Arabidopsis. The results showed that the expression of SsMAX2 in S. sebiferum seedlings was stress-responsive, and SsMAX2 overexpression (OE) in Arabidopsis significantly promoted resistance to drought, osmotic, and salt stresses. Moreover, SsMAX2 OE lines exhibited decreased chlorophyll degradation, increased soluble sugar and proline accumulation, and lower water loss ratio in response to the stresses. Importantly, anthocyanin biosynthesis and the activities of several antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), were enhanced in the SsMAX2 OE lines, which further led to a significant reduction in hydrogen peroxide levels. Additionally, the SsMAX2 OE lines exhibited higher expression level of several abscisic acid (ABA) biosynthesis genes, suggesting potential interactions between SL and ABA in the regulation of stress adaptation. Overall, we provide physiological and biochemical evidence demonstrating the pivotal role of SsMAX2 in the regulation of osmotic, drought, and salt stress resistance and show that MAX2 can be a genetic target to improve stress tolerance.
Funder
Anhui Natural Science Foundation
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis