Author:
Min Chunying,He Zengbao,Song Haojie,Liu Dengdeng,Jia Wei,Qian Jiamin,Jin Yuhui,Guo Li
Abstract
Increasing demands of multi-functional lubricant materials with well distributed nanoparticles has been generated in the field of oil lubrication. In this study, one-dimensional (1-D) acidified multi-walled carbon nanotubes (CNTs) and two-dimensional (2-D) graphene oxide (GO) sheets were dispersed together under an ultra-sonication condition to form CNTs/GO hybrids and the corresponding CNTs/GO hybrids decorated with uniform zero-dimensional (0-D) cerium oxide (CeO2) nanoparticles were prepared via a facile hydrothermal method. The tribological performance of CeO2/CNTs/GO ternary nanocomposite was systematically investigated using a MS-T3000 ball-on-disk tester. The results demonstrated that CeO2/GO/CNTs nanocomposites can effectively reduce the friction of sliding pairs in paraffin oil. Moreover, the oil with 1 wt% of CeO2/GO/CNTs exhibited the best lubrication properties with the lowest friction coefficient and wear scar diameters (WSD) compared with adding only GO nanosheet, CeO2, and CeO2/CNTs hybrid nanocomposite as lubricant additives. It is concluded that due to the synergistic effect of 0D CeO2, 1D CNTs, and 2D GO during sliding process, a dimensionally mixed CeO2/GO/CNTs nanocomposite exhibits excellent lubricating properties, providing innovative and effective additives for application in the field of lubrication.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献