Author:
Yamauchi Sho,Suzuki Keiji
Abstract
Previous machine learning algorithms use a given base action set designed by hand or enable locomotion for a complicated task through trial and error processes with a sophisticated reward function. These generated actions are designed for a specific task, which makes it difficult to apply them to other tasks. This paper proposes an algorithm to obtain a base action set that does not depend on specific tasks and that is usable universally. The proposed algorithm enables as much interoperability among multiple tasks and machine learning methods as possible. A base action set that effectively changes the external environment was chosen as a candidate. The algorithm obtains this base action set on the basis of the hypothesis that an action to effectively change the external environment can be found by observing events to find undiscovered sensor values. The process of obtaining a base action set was validated through a simulation experiment with a differential wheeled robot.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献