Condition Prediction of Existing Concrete Bridges as a Combination of Visual Inspection and Analytical Models of Deterioration

Author:

Zambon Ivan,Vidović Anja,Strauss AlfredORCID,Matos Jose

Abstract

In most state-of-the-art Bridge Management Systems, structural condition is predicted by a homogeneous Markov chain model that uses condition ratings assigned during visual inspections. Although generally accepted, such an approach exhibits certain shortcomings, one of which is not considering the nature of actual physical phenomena that cause deterioration. To overcome this shortcoming, this article presents a framework that combines both information on condition ratings through the semi-Markov process and knowledge of bridge properties using analytical deterioration models. In this manner, and contrary to current practice, not only are the results of visual inspection taken into account, but also information such as environmental loading, as well as material and structural properties. The presented framework was implemented in the case study bridge, in which the deterioration caused by carbonation-induced corrosion was studied. Along with the implementation in the case study, the article contained a detailed overview of the subject of carbonation-induced corrosion and emphasized issues that require additional research in order to develop the framework into a comprehensive and fully applicable tool for condition prediction. Accounting for its adaptability to other material types and deterioration processes and its consideration of the historic deterioration path, the framework presents a suitable alternative to frameworks presently implemented for condition prediction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3