Abstract
The effects of carbon black specific surface area and morphology were investigated by characterizing four different carbon black additives and then evaluating the effect of adding them to the negative electrode of valve-regulated lead–acid batteries for electric bikes. Low-temperature performance, larger current discharge performance, charge acceptance, cycle life and water loss of the batteries with carbon black were studied. The results show that the addition of high-performance carbon black to the negative plate of lead–acid batteries has an important effect on the cycle performance at 100% depth-of-discharge conditions and the cycle life is 86.9% longer than that of the control batteries. The excellent performance of the batteries can be attributed to the high surface area carbon black effectively inhibiting the sulfation of the negative plate surface and improving the charge acceptance of the batteries.
Funder
National Natural Science Foundation of China
Natural Science Foundation Major Project of Jiangxi Province of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献