Author:
Wang Xinhua,Ouyang Jihong,Wei Yi,Liu Fei,Zhang Guang
Abstract
Various gases and aerosols in bad weather conditions can cause severe image degradation, which will seriously affect the detection efficiency of optical monitoring stations for high pollutant discharge systems. Thus, penetrating various gases and aerosols to sense and detect the discharge of pollutants plays an important role in the pollutant emission detection system. Against this backdrop, we recommend a real-time optical monitoring system based on the Stokes vectors through analyzing the scattering characteristics and polarization characteristics of both gases and aerosols in the atmosphere. This system is immune to the effects of various gases and aerosols on the target to be detected and achieves the purpose of real-time sensing and detection of high pollutant discharge systems under bad weather conditions. The imaging system is composed of four polarizers with different polarization directions integrated into independent cameras aligned parallel to the optical axis in order to acquire the Stokes vectors from various polarized azimuth images. Our results show that this approach achieves high-contrast and high-definition images in real time without the loss of spatial resolution in comparison with the performance of conventional imaging techniques.
Funder
Open-fund of State Key Laboratory of Applied Optics
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献