Robust Device-Free Intrusion Detection Using Physical Layer Information of WiFi Signals

Author:

Lv JiguangORCID,Man Dapeng,Yang Wu,Gong LiangyiORCID,Du Xiaojiang,Yu Miao

Abstract

WiFi infrastructures are widely deployed in both public and private buildings. They make the connection to the internet more convenient. Recently, researchers find that WiFi signals have the ability to sense the changes in the environment that can detect human motion and even identify human activities and his identity in a device-free manner, and has many potential security applications in a smart home. Previous human detection systems can only detect human motion of regular moving patterns. However, they may have a significant detection performance degradation when used in intrusion detection. In this study, we propose Robust Device-Free Intrusion Detection (RDFID) system leveraging fine-grained Channel State Information (CSI). The noises in the signals are removed by a Principle Component Analysis (PCA) and a low pass filter. We extract a robust feature of frequency domain utilizing Continuous Wavelet Transform (CWT) from all subcarriers. RDFID captures the changes from the whole wireless channel, and a threshold is obtained self-adaptively, which is calibration-free in different environments, and can be deployed in smart home scenarios. We implement RDFID using commodity WiFi devices and evaluate it in three typical office rooms with different moving patterns. The results show that our system can accurately detect intrusion of different moving patterns and different environments without re-calibration.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3