Abstract
Local backlight dimming is a promising display technology, with good performance in improving the visual quality and reducing the power consumption of device displays. To set optimal backlight luminance, it is important to design high performance local dimming algorithms. In this paper, we focused on improving the quality of the displayed image, and take local backlight dimming as an optimization problem. In order to better evaluate the image quality, we used the structural similarity (SSIM) index as the image quality evaluation method, and built the model for the local dimming problem. To solve this optimization problem, we designed the local dimming algorithm based on the Fireworks Algorithm (FWA), which is a new evolutionary computation (EC) algorithm. To further improve the solution quality, we introduced a guiding strategy into the FWA and proposed an improved algorithm named the Guided Fireworks Algorithm (GFWA). Experimental results showed that the GFWA had a higher performance in local backlight dimming compared with the Look-Up Table (LUT) algorithm, the Improved Shuffled Frog Leaping Algorithm (ISFLA), and the FWA.
Funder
Research on HDR Backlight Liquid Crystal Processing Technology Based on Depth Neural Network
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献