Optimizing C-RAN Backhaul Topologies: A Resilience-Oriented Approach Using Graph Invariants

Author:

Frascolla Valerio,Dominicini CristinaORCID,Paiva Marcia,Caporossi Gilles,Marotta MarceloORCID,Ribeiro MoisesORCID,Segatto Marcelo,Martinello MagnosORCID,Monteiro Maxwell,Both CristianoORCID

Abstract

At the verge of the launch of the first commercial fifth generation (5G) system, trends in wireless and optical networks are proceeding toward increasingly dense deployments, supporting resilient interconnection for applications that carry higher and higher capacity and tighter latency requirements. These developments put increasing pressure on network backhaul and drive the need for a re-examination of traditional backhaul topologies. Challenges of impending networks cannot be tackled by star and ring approaches due to their lack of intrinsic survivability and resilience properties, respectively. In support of this re-examination, we propose a backhaul topology design method that formulates the topology optimization as a graph optimization problem by capturing both the objective and constraints of optimization in graph invariants. Our graph theoretic approach leverages well studied mathematical techniques to provide a more systematic alternative to traditional approaches to backhaul design. Specifically, herein, we optimize over some known graph invariants, such as maximum node degree, topology diameter, average distance, and edge betweenness, as well as over a new invariant called node Wiener impact, to achieve baseline backhaul topologies that match the needs for resilient future wireless and optical networks.

Funder

European Parliament

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Key technology advancements driving mobile communications from generation to generation;Raaf;Intel Technol. J.,2014

2. What Will 5G Be?

3. https://networld2020.eu/wp-content/uploads/2015/01/Joint-Whitepaper-V12-clean-after-consultation.pdf

4. 5G Backhaul Challenges and Emerging Research Directions: A Survey

5. Interface Specification V7.0,2015

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3