Freeform Hybrid Manufacturing: Binderjet, Structured Light Scanning, Confocal Microscopy, and CNC Machining

Author:

Dvorak Jake1ORCID,Gilmer Dustin1,Zameroski Ross1ORCID,Cornelius Aaron1ORCID,Schmitz Tony12ORCID

Affiliation:

1. Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA

2. Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

Abstract

This paper describes a hybrid manufacturing approach for silicon carbide (SiC) freeform surfaces using binder jet additive manufacturing (BJAM) to print the preform and machining to obtain the design geometry. Although additive manufacturing (AM) techniques such as BJAM allow for the fabrication of complex geometries, additional machining or grinding is often required to achieve the desired surface finish and shape. Hybrid manufacturing has been shown to provide an effective solution. However, hybrid manufacturing also has its own challenges, depending on the combination of processes. For example, when the subtractive and additive manufacturing steps are performed sequentially on separate systems, it is necessary to define a common coordinate system for part transfer. This can be difficult because AM preforms do not inherently contain features that can serve as datums. Additionally, it is important to confirm that the intended final geometry is contained within the AM preform. The approach described here addresses these challenges by using structured light scanning to create a stock model for machining. Results show that a freeform surface was machined with approximately 70 µm of maximum deviation from that which was planned.

Funder

Department of Energy

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3